

Synthesis of 4-Thiopseudoisocytidine and 4-Thiopseudouridine as Components of Triplex-forming Oligonucleotides

Itaru Okamoto, Shiqi Cao, Hiroto Tanaka, Kohji Seio, and Mitsuo Sekine*

Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501

(Received November 26, 2008; CL-081117; E-mail: msekine@bio.titech.ac.jp)

In this paper, we report convenient methods for the synthesis of 4-thiopseudoisocytidine ($s^4\psi iC$) and 4-thiopseudouridine ($s^4\Psi$). 1H NMR spectral analysis of these modified nucleosides showed that both $s^4\Psi$ and $s^4\psi iC$ prefer C3'-endo ribose pucker. These conformational properties are favorable for the stabilization of triplex formation.

Using the antigenic strategy, a large number of modified nucleosides have been synthesized to enhance the thermal stability of DNA triplets formed by hybridization of the third DNA strands with DNA duplexes.¹⁻⁵ These studies showed that the use of homopyrimidine-oligodeoxynucleotides containing cytosine or 5-methylcytosine bases as triplet-forming oligodeoxynucleotides (TFOs) under weakly acidic conditions resulted in significant stabilization of the resulting parallel triplet structures. This was due to the formation of protonated cytosine or 5-methylcytosine bases that could bind to guanine bases at the Hoogsteen base-pairing site.⁶⁻⁹ However, those acidic conditions limit the sequences of TFOs; therefore, antigenic therapy using this strategy is not generally applicable. To overcome this limitation, several modified nucleosides have been developed to mimic the structure of the 3-N-protonated cytosine base.¹⁰⁻¹⁵ 2'-O-Methylpseudoisocytidine (ψiCm) is known to form a triplet base pair with a G-C base pair under neutral conditions. However, TFOs containing ψiCm could not stabilize the triplet structure sufficiently at neutral pH.^{10,11}

On the other hand, we have recently reported that TFOs containing 2'-O-methyl-2-thiouridine (s^2Um) or 2-thiothymidine (s^2T) formed quite stable parallel triplets.¹⁶ Enhancement of the thermal stability of these parallel triplets can be explained by means of the strong stacking interaction of the 2-thiocarbonyl group with the 5'-upstream or 3'-downstream bases. In particular, it was found that a consecutive alignment of s^2Um or s^2T in TFOs resulted in a more effective increase in the binding ability toward DNA duplexes.¹⁶

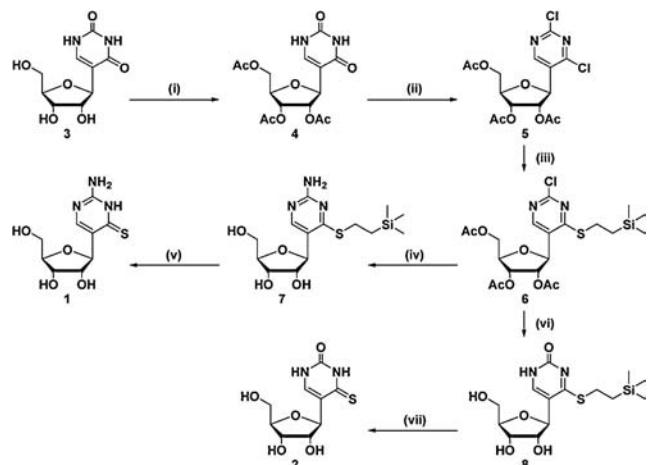
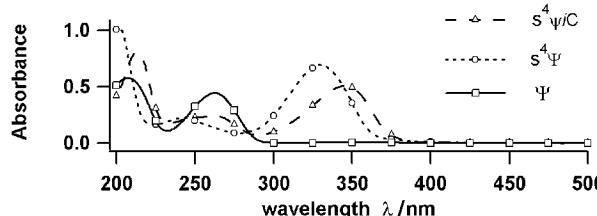

It was expected that a consecutive pile of 4-thiopseudoisocytidine (**1**: $s^4\psi iC$) in combination with s^2Um or s^2T might cause an increase in the thermal stability of the parallel triplet structures. In this paper, we report convenient methods for the synthesis of **1** and 4-thiopseudouridine (**2**: $s^4\Psi$), which can be derived from a synthetic intermediate of the former. Chemical structures of these modified nucleosides were shown in Figure 1.

Figure 1. Chemical structures of 4-thiopseudoisocytidine and 4-thiopseudouridine.

In the synthesis of 4-thiouridine (s^4U), it was reported that the thiolation of the pyrimidine ring at position 4 could be achieved by the reaction of 4-(2,4,6-triisopropylbenzenesulfonyl)pyrimidinone nucleoside derivatives with 3-sulfanylpropionitrile.¹⁷⁻¹⁹ In addition, many reactions with pyrimidine rings substituted with leaving groups at position 4 were reported. Therefore, such types of substitution reactions might also produce 4-substituted Ψ derivatives. Townsend et al. reported 2,4-dichloro-5-(2,3,5-tri-O-acetyl- β -D-ribofuranosyl)pyrimidine as a Ψ derivative that has chloro groups at positions 2 and 4 on the pyrimidine ring.²⁰ Considering the reactivity of compound, we expected that the substitution reaction might occur predominantly at position 4.²¹ According to Townsend's procedure (Scheme 1), pseudouridine **3** was converted to 2',3',5'-tri-O-acetylthiopseudouridine (**4**) in 92% yield. Compound **4** was further treated with excess $POCl_3$ to give 2,4-dichloropseudouridine derivative **5** in 91% yield.

After that, as expected, the reaction of compound **5** with 2-(trimethylsilyl)ethanethiol in *N,N*-dimethylacetamide in the presence of triethylamine formed only the 4-thiolated compound **6** in a high yield of 84%. The structure of this product was determined from the correlation between the 1H signal of the 2-(trimethylsilyl)ethyl group and the ^{13}C signal of 4C on the pyrimidine ring, obtained by HMBC spectrum analysis. The chloro group of compound **6** was converted to an amino group by the reaction with concd NH_3 to form compound **7** in 44% yield. Treatment of **7** with Bu_4NF formed $s^4\psi iC$ (**1**) in 62% yield.²²



Scheme 1. Reagents and conditions: (i) Ac_2O (10 equiv), pyridine, rt; (ii) N,N -diethylaniline hydrochloride (1.0 equiv), $POCl_3$ (20 equiv), reflux; (iii) 2-(trimethylsilyl)ethanethiol (1.2 equiv), triethylamine (1.2 equiv), DMA, rt; (iv) concd NH_3 , dioxane, 100 °C; (v) TBAF (3.0 equiv), THF, 50 °C; (vi) $LiOH \cdot H_2O$ (5.0 equiv), DMA, 60 °C; and (vii) TBAF (1.5 equiv), THF, 60 °C.

Table 1. Conformational analysis of $s^4\Psi$ and $s^4\psi iC$ in D_2O

	Ψ	$s^4\Psi$	$s^4\psi iC$
%N (C3'-endo) ^a	50%	78%	66%
$J_{1' H2' H}$	5.4 Hz	2.2 Hz	3.9 Hz
$J_{3' H4' H}$	5.4 Hz	7.8 Hz	7.1 Hz

^a%N values of nucleosides were determined by following equation: %N (C3'-endo) = $J_{3' H4' H}/(J_{1' H2' H} + J_{3' H4' H}) \times 100$.

Figure 2. UV spectra of $s^4\psi iC$ and $s^4\Psi$ in H_2O .

On the other hand, hydrolysis of compound **6** with LiOH afforded 4-(2-trimethylsilyl)ethyl-4-thiopseudouridine (**8**) in 36% yield. The low yields of the above two reactions of compound **6** forming compounds **7** and **8** were due to side reactions of position 4, since it is known that pyrimidine derivatives having alkylthio or sulfanyl groups at position 4 or 2 react easily with nucleophilic reagents.²³⁻²⁶ The TBAF-mediated deprotection of compound **8** formed $s^4\Psi$ in 67% yield.²⁷

To clarify the sugar conformations of $s^4\Psi$ and $s^4\psi iC$, 1H NMR spectral analysis was performed. As shown in Table 1, it was found that $s^4\Psi$ and $s^4\psi iC$ showed C3'-endo ribose puckering forms (%N; $s^4\Psi$: 78%; $s^4\psi iC$: 66%) more predominantly than Ψ . It was reported that s^2U derivatives prefer C3'-endo ribose puckering.²⁸⁻³⁰ This conformational predominance is known to be caused by steric repulsion between the 2-thiocarbonyl group of s^2U and the 2'-hydroxy group.²⁸ The C3'-endo predominance observed could be explained by the same type of steric repulsion.

It is known that s^4U exhibited a unique UV absorption spectrum with maximum absorbance at 330 nm.³¹ As shown in Figure 2, the UV absorption maxima of 4-thiopseudo-nucleosides $s^4\psi iC$ and $s^4\Psi$ were shifted markedly from that of Ψ (260 nm) to 345 and 331 nm, respectively. These spectral changes were very similar to those from U to s^4U . Since the structure of s^4U resembles that of $s^4\Psi$, these UV spectral changes also supported the view that the thiolation occurred at position 4 of the pyrimidine ring.

In conclusion, we synthesized $s^4\psi iC$ and $s^4\Psi$ successfully. The 1H NMR studies of these modified nucleosides showed that both $s^4\psi iC$ and $s^4\Psi$ prefer C3'-endo ribose puckering. These conformational properties are favorable for the stabilization of both RNA-duplex and parallel triplex formation. Synthesis of oligonucleotides containing $s^4\psi iC$ and study of their duplex- and triplex-forming abilities are now in progress.

This work was supported by a grant from CREST of JST (Japan Science and Technology Agency) and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. This work was support-

ed in part by a grant of the Genome Network Project from the Ministry of Education, Culture, Sports, Science and Technology, Japan and by the COE21 project.

References and Notes

1. C. Hélène, J.-J. Toulme, *Biochim. Biophys. Acta* **1990**, *1049*, 99.
2. D. Praseuth, A. L. Guiyssse, C. Hélène, *Biochim. Biophys. Acta* **1999**, *1489*, 181.
3. K. R. Fox, *Curr. Med. Chem.* **2000**, *7*, 17.
4. S. Buchini, C. J. Leumann, *Curr. Opin. Chem. Biol.* **2003**, *7*, 717.
5. R. V. Guntaka, B. R. Varma, K. T. Weber, *Int. J. Biochem. Cell Biol.* **2003**, *35*, 22.
6. C. Des los Santos, M. Rosen, D. Patel, *Biochemistry* **1989**, *28*, 7282.
7. P. Rajagopal, J. Feigon, *Biochemistry* **1989**, *28*, 7859.
8. J. L. Asensio, A. N. Lane, J. Dhesi, S. Bergqvist, T. Brown, *J. Mol. Biol.* **1998**, *275*, 811.
9. J. Robles, A. Grandas, E. Pedroso, F. J. Luque, R. Eritja, M. Orozco, *Curr. Org. Chem.* **2002**, *6*, 1333.
10. A. Ono, P. O. P. Ts'o, L. S. Kan, *J. Am. Chem. Soc.* **1991**, *113*, 4032.
11. A. Ono, P. O. P. Ts'o, L. S. Kan, *J. Org. Chem.* **1992**, *57*, 3225.
12. G. Xiang, W. Soussou, L. W. McLaughlin, *J. Am. Chem. Soc.* **1994**, *116*, 11155.
13. R. Berressem, J. W. Engels, *Nucleic Acids Res.* **1995**, *23*, 3465.
14. U. von Krosigk, S. A. Benner, *J. Am. Chem. Soc.* **1995**, *117*, 5361.
15. G. Xiang, R. Bogacki, L. W. McLaughlin, *Nucleic Acids Res.* **1996**, *24*, 1963.
16. I. Okamoto, K. Seio, M. Sekine, *Bioorg. Med. Chem. Lett.* **2006**, *16*, 3334.
17. R. S. Coleman, J. M. Siedlecki, *Tetrahedron Lett.* **1991**, *32*, 3033.
18. C. J. Adams, J. B. Murray, J. R. P. Arnold, P. G. Stockley, *Tetrahedron Lett.* **1994**, *35*, 765.
19. R. S. Coleman, E. A. Kesicki, *J. Am. Chem. Soc.* **1994**, *116*, 11636.
20. 2,4-Dichloro-5-(β -D-ribofuranosyl)pyrimidines and substituted derivatives: L. B. Townsend, D. S. Wise, R. A. Earl, G. Belton, U.S. Pat. Appl. 4092472, **1989**.
21. R. G. Shepherd, J. L. Fedrick, *Adv. Heterocycl. Chem.* **1965**, *4*, 145.
22. Physical properties of 4-thiopseudoisocytidine (**1**) are shown in Supporting Information. Supporting Information is available electronically on the CSJ-Journal Web site, <http://www.csj.jp/journals/chem-lett/index.html>.
23. J. J. Fox, D. Van Praag, I. Wempen, I. L. Doerr, L. Cheong, J. E. Knoll, M. L. Eidinoff, A. Bendich, G. B. Brown, *J. Am. Chem. Soc.* **1959**, *81*, 178.
24. C.-H. Niu, *Anal. Biochem.* **1984**, *139*, 404.
25. T. Ueda, J. J. Fox, *J. Med. Chem.* **1963**, *6*, 697.
26. H. C. Van der Plas, B. Zuurdeeg, H. W. van Meeteren, *Recl. Trav. Chim. Pays-Bas* **1969**, *88*, 1156.
27. Physical properties of 4-thiopseudouridine (**2**) are shown in Supporting Information. Supporting Information is available electronically on the CSJ-Journal Web site, <http://www.csj.jp/journals/chem-lett/index.html>.
28. Y. Yamamoto, S. Yokoyama, T. Miyazawa, K. Watanabe, S. Higuchi, *FEBS Lett.* **1983**, *157*, 95.
29. H. Sierzputowska-Gracz, E. Sochacka, A. Malkiewicz, K. Kuo, C. W. Gehrke, P. F. Agris, *J. Am. Chem. Soc.* **1987**, *109*, 7171.
30. P. F. Agris, H. Sierzputowska-Gracz, W. Smith, A. Malkiewicz, E. Sochacka, B. Nawrot, *J. Am. Chem. Soc.* **1992**, *114*, 2652.
31. W. Saenger, *Principles of Nucleic Acid Structure*, Springer-Verlag, New York, **1987**.